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Graded rings

Definition
A commutative unital ring R is called a graded ring if it can be
written as a direct sum of subgroups

R =
⊕
i≥0

Ri such that RiRj ⊆ Ri+j , ∀i, j ≥ 0.

Elements of Ri are called homogeneous elements of degree i.

Example

I polynomial rings in several variables R = F[x1, . . . , xn], Ri is
the set of all homogeneous polynomials of degree i.

I the blowup (Rees) algebra R(I) =
⊕

i≥0 Ii of any ideal I.
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Graded Modules

Definition
A module M over a graded ring R is called a graded module if it
can be written as a direct sum of subgroups

M =
⊕
j≥0

Mj such that RiMj ⊆ Mi+j ∀i, j ≥ 0.

Example
If R is a graded ring and I is a homogeneous ideal then the ideal I
as well as the quotient ring R/I are graded R-modules.
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Hilbert Function

From now
I R = F[x1, . . . , xn]

I M a finitely generated graded R-module.

Definition
The Hilbert function of a graded R-module M is given by

HM : N→ N, HM(i) = dimF(Mi).

Example/Exercise (Polynomial ring)
For M = R = F[x1, . . . , xn] , we have HM(i) =

(
n+i−1

i

)
.
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Hilbert Function Example

Example
I = (x3y, x2y4) ⊆ R = F[x, y]

Dimension theory

Hilbert function of a monomial ideal

Consider the ideal I =
⌦
x3y, x2y4

↵
.

0 1 2 3 4 5 6

The Hilbert function at s is the number of white dots below a diagonal
with intercept x = s.

s 0 1 2 3 4 5 6 7 8 ...

H(s) 1 3 6 10 14 18 21 24 27 ...

HI(s) = 3s + ✏(s), where ✏(s) is eventually constant: ✏(s) = 3 for s � 6.

What is general form of H(s) for a monomial ideal?

James Carlson (CIMAT Lectures) Lecture 2: Hilbert function, dimension February 27, 2008 4 / 8

Figure: A picture of the ideal I

i 0 1 2 3 4 5 6 7 8 9 10 11 12
HI(i) 0 0 0 0 1 2 4 5 6 7 8 9 10

HR/I(i) 1 2 3 4 4 4 3 3 3 3 3 3 3



Hilbert Function Example

Example
I = (x3y, x2y4) ⊆ R = F[x, y]

i 0 1 2 3 4 5 6 7 8 9 10 11 12
HI(i) 0 0 0 0 1 2 4 5 6 7 8 9 10

HR/I(i) 1 2 3 4 4 4 3 3 3 3 3 3 3

Patterns ?

I HI(i) grows linearly for i � 0: HI(i) = i − 2 for i ≥ 6.

I HR/I(i) eventually constant for i � 0: HR/I(i) = 3 for i ≥ 6.
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Hilbert Series

Definition
The Hilbert series of a graded module M is the generating
function

HSM(t) =
∑
i≥0

HM(i)t i .

Example (Polynomial ring)
For M = R = F[x1, . . . , xn], we have HSM(t) = 1

(1−t)n .



Hilbert Series Example

Example
If R = F[x1, . . . , xn], then HSR(t) = 1

(1−t)n .
Proof:

HSR(t) =

(
1

1 − t

)n

⇔∑
i≥0

dimF(Ri)t i = (1 + t + t2 + · · · ta + · · · )n ⇔

dimF(Ri) = #{(a1, a2, . . . , an) | a1 + a2 + · · ·+ an = i} ⇔

dimF(Ri) = #{xa1
1 xa2

2 · · · x
an
n ∈ Ri} X.
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Enter Hilbert

Figure: David Hilbert (1862-1943)



Hilbert-Serre Theorem

Theorem (Hilbert-Serre)
If M is a finitely generated graded module over the polynomial ring
R = F [x1, . . . , xn] then

HSM(t) =
p(t)

(1 − t)n for some p(t) ∈ Z[t].

In reduced form one can write HSM(t) =
h(t)

(1−t)d for unique

I h-polynomial h = h0 + h1t + . . .+ hs ts ∈ Z[t] with h(1) , 0;
h0, h1, . . . , hs is called the h-vector of M

I d ∈ N, 0 ≤ d ≤ n called the Krull dimension of M.

Corollary (Hilbert)
The Hilbert function of M is eventually given by a polynomial
function of degree equal to d − 1 called the Hilbert polynomial.
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Properties of Hilbert Series

Proposition

1. Additivity in short exact sequences: if
0→ A → B → C → 0 is a short exact sequence of graded
modules and maps then

HSB(t) = HSA (t) + HSC(t).

2. Sensitivity to regular elements: if M is a graded module
and f ∈ Rd , d ≥ 1, is a non zero-divisor on M then

HSM/fM(t) = (1 − td)HSM(t).



Hilbert Series Example
Example
For R = F[x, y, z] let’s compute the Hilbert Series for

M = R/(x2 + y2 + z2︸          ︷︷          ︸
f1

, x3 + y3 + z3︸          ︷︷          ︸
f2

, x4 + y4 + z4︸          ︷︷          ︸
f3

)

.

I f1 is a non zero-divisor on R, thus HSR/f1)(t) = (1 − t2)HSR(t)

I f2 is a non zero-divisor on R/(f1), thus

HSR/(f1,f2)(t) = (1 − t3)HSR/(f1)(t) = (1 − t3)(1 − t2)HSR(t)

I f3 is a non zero-divisor on R/(f1, f2), thus

HSR/(f1,f2,f3)(t) = (1 − t4)HSR/(f1,f2)(t) = (1 − t4)(1 − t3)(1 − t2)HSR(t)

=
(1 − t4)(1 − t3)(1 − t2)

(1 − t)3

= t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t + 1.
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Classification of Hilbert functions

Figure: F. Macaulay (1862-1937) and R. Stanley.



Classification Problem

Question
What are all the possible Hilbert functions or Hilbert series or
h-vectors of (cyclic) graded modules satisfying a given property?

Property of M = R/I Description of HM Reference
Arbitrary “admissible” Macaulay

(a combinatorial condition)

Complete intersection HSM(t) =
∏s

i=1(1−tdi )

(1−t)n the audience

Gorenstein the h-vector must be symmetric Stanley
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Geometric Classification Problem
Question
What are all the possible Hilbert functions of cyclic graded
domains R/P?

I R/P is a domain iff P is a prime ideal
I the vanishing set of a prime ideal P,

V(P) = {(a1, . . . , an) ∈ Fn(or Pn−1) | f(a1, . . . , an) = 0,∀f ∈ P}

is an irreducible algebraic variety

Figure: An algebraic variety V(x2 + y2 − z2).
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Bertini’s Theorem

Theorem (Bertini)
Let R/P be a Cohen-Macaulay1 domain of Krull dimension at least
three over an infinite field F. Then there exists f ∈ R1 such that
R/P + (f) is also a domain.

Figure: An illustration of Bertini’s theorem.

1a technical condition which allows for induction on the Krull dimension.



Reduction to the case of curves
Corollary (Stanley)
Let R/P be a Cohen-Macaulay graded domain of dimension
greater or equal than two. Then the h-vector of R/P is also the
h-vector of a Cohen-Macaulay graded domain of Krull dimension
two (that is, the homogeneous coordinate ring of an irreducible
projective curve).

Figure: An algebraic variety V(x2 + y2 − z2) of Krull dimension two in
affine space and in projective space.



Further reduction to points with UPP

Theorem (Harris)
Let P be a prime ideal such that the Krull dimension of R/P is 2.
Then there exists f ∈ R1 (a hyperplane) such that V(P + (f)) (the
hyperplane section) is a set Γ of d points such that for every subset
Γ′ ⊆ Γ of d′ points and for every i ≥ 0 we have

HIΓ(i) = min{d′,HI′
Γ
(i)}.

Definition
A set Γ of points satisfying the condition above is said to have the
uniform position property (UPP).



UPP Example
Example/Exercise

76 J.C. Migliore - U. Nagel

The integer ℓ in Proposition 6 is related to the integers in the equation (4). In fact, we have

COROLLARY 6. Let X be arithmetically Gorenstein with minimal free resolution

0 → R(−a) → Fc−1 → · · · → F1 → R → R/IX → 0

and assume that OX ∼= ωX (ℓ). Then ℓ = n + 1− a.

If A is Gorenstein then the integer s, the last degree in which the h-vector is non-zero, is
called the socle degree of Ā, the Artinian reduction of A = R/IX .

There is a very useful criterion for zeroschemes to be arithmetically Gorenstein. To explain
it, we will need a new notion. For now we will assume that our zeroschemes are reduced,
although the necessity for this was removed by Kreuzer [62].

DEFINITION 13. Let Z ⊂ Pn be a finite reduced set of points. Assume that s+1 = reg(IX ),
i.e. s is the last degree in which the h-vector of Z is non-zero. Then Z has the Cayley-Bacharach
property (CB) if, for every subset Y ⊂ Z consisting of |Z | − 1 points, we have hR/IY (s − 1) =
hR/IZ (s− 1). Z has the Uniform Position property (UPP) if any two subsets Y,Y ′ of (the same)
arbitrary cardinality have the same Hilbert function, which necessarily is

hR/IY (t) = min{hR/IZ (t), |Y |} for all t.

EXAMPLE 8. The Cayley-Bacharach property is a weaker version of the Uniform Position
Property. For example, in P2 consider the following examples.

✬
✫

✩
✪• •

•

•

•

•

h-vector 1 2 2 1 (complete intersection
on a conic)

This has UPP.

•

•

•

•

•

• h-vector 1 2 2 1 (complete intersection)

This has CB but not UPP.

• •

•

•

•

•

h-vector 1 2 2 1

This has neither CB nor UPP.

THEOREM 1 ([31]). A reduced set of points Z is arithmetically Gorenstein if and only if
its h-vector is symmetric and it has the Cayley-Bacharach property.

EXAMPLE 9. A set of n + 2 points in Pn in linear general position is arithmetically Goren-
stein. In particular, a set of 5 points in P3 is arithmetically Gorenstein, so we see that 4 points

Figure: Six points on a conic in P2 and the UPP.



Partial classification

Question (Reformulation of Classification Question)
What are all the possible Hilbert functions of points in Pn satisfying
the uniform position property?

There is a partial answer in the case n = 2:

Theorem
A finite sequence of natural numbers is the h-vector of R/I, where
V(I) is a set of points in P2 satisfying UPP if and only if
h0 = 1, h1 = 2 and the h-vector of R/I is admissible and of
decreasing type, meaning if hi+1 < hi then hj+1 < hj for all j ≥ i.
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Open Problems

Figure: You ?



The Hilbert function of a generic algebra

Conjecture (Fröberg)
Let F1, . . . ,Fr be homogeneous polynomials of degrees
d1, . . . , dr ≥ 1 in a polynomial ring R = F [x1, . . . , xn].
If F1, . . . ,Fr are chosen “randomly” and I = (F1, . . . ,Fr), then

HSR/I(t) =

∏r
i=1(1 − tdi )

(1 − t)n .



Stanley’s unimodality conjecture

Conjecture (Stanley)
The h-vector of a graded Cohen-Macaulay domain is unimodal,
i.e. there exists 0 ≤ j ≤ s such that

h0 ≤ h1 ≤ h2 . . . ≤ hj ≥ . . . ≥ hs−1 ≥ hs .



Points with UPP

Question (Harris)
What are the possible Hilbert functions of points in Pn, n ≥ 4
satisfying the UPP?



Nagata’s conjecture

An ideal defining a set of fat points is an ideal of the form

I = Im1
p1
∩ Im2

p2
∩ · · · ∩ Imr

pr

where Ipi is the ideal defining a point pi ∈ P
n.

Conjecture (Nagata)
If I = Im1

p1
∩ Im2

p2
∩ · · · ∩ Imr

pr
is an ideal defining r fat points in Pn and

d > 0 is an integer such that HI(d) > 0 then

d ≥
m1 + m2 + · · ·+ mr

√
n

.
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l’Université de Montreal, 1982.

F. S. Macaulay, Some properties of enumeration in the theory of
modular systems, Proc. London Math. Soc., 26 (1927), 531–555.

R. Maggioni, A. Ragusa, The Hilbert function of generic plane
sections of curves of P3. Invent. Math. 91 (1988), no. 2, 253–258.

M. Nagata, On the 14-th problem of Hilbert, Am. J. Math., 81 (1959),
766–772.

R. P. Stanley, Hilbert functions of graded algebras, Advances in
Math. 28 (1978), no. 1, 57–83.

R. P. Stanley, On the Hilbert function of a graded Cohen-Macaulay
domain. J. Pure Appl. Algebra 73 (1991), no. 3, 307–314.



Thank you!
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