Hilbert Functions in Algebra and Geometry

Alexandra Seceleanu

Department of Mathematics
University of Nebraska-Lincoln

GWCAWMMG workshop
April 13, 2019

Outline

What is a Hilbert function?

Hilbert's Theorem

Classification of Hilbert Functions in Geometry

Open questions

Graded rings

Definition

A commutative unital ring R is called a graded ring if it can be written as a direct sum of subgroups

$$
R=\bigoplus_{i \geq 0} R_{i} \quad \text { such that } \quad R_{i} R_{j} \subseteq R_{i+j}, \forall i, j \geq 0
$$

Elements of R_{i} are called homogeneous elements of degree i.
Example

- polynomial rings in several variables $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right], R_{i}$ is the set of all homogeneous polynomials of degree i. - the blowup (Rees) algebra $\mathcal{R}(I)=\bigoplus_{i \geq 0} I^{i}$ of any ideal I.

Graded rings

Definition

A commutative unital ring R is called a graded ring if it can be written as a direct sum of subgroups

$$
R=\bigoplus_{i \geq 0} R_{i} \quad \text { such that } \quad R_{i} R_{j} \subseteq R_{i+j}, \forall i, j \geq 0
$$

Elements of R_{i} are called homogeneous elements of degree i.

Example

- polynomial rings in several variables $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right], R_{i}$ is the set of all homogeneous polynomials of degree i.
- the blowup (Rees) algebra $\mathcal{R}(I)=\bigoplus_{i \geq 0} I^{i}$ of any ideal I.

Graded Modules

Definition

A module M over a graded ring R is called a graded module if it can be written as a direct sum of subgroups

$$
M=\bigoplus_{j \geq 0} M_{j} \text { such that } \quad R_{i} M_{j} \subseteq M_{i+j} \forall i, j \geq 0
$$

Example
If R is a graded ring and I is a homogeneous ideal then the ideal /
as well as the quotient ring R / I are graded R-modules.

Graded Modules

Definition

A module M over a graded ring R is called a graded module if it can be written as a direct sum of subgroups

$$
M=\bigoplus_{j \geq 0} M_{j} \quad \text { such that } \quad R_{i} M_{j} \subseteq M_{i+j} \forall i, j \geq 0
$$

Example

If R is a graded ring and I is a homogeneous ideal then the ideal I as well as the quotient ring R / I are graded R-modules.

Hilbert Function

From now

- $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- M a finitely generated graded R-module.

Definition
The Hilbert function of a graded R-module M is given by

$$
H_{M}: \mathbb{N} \rightarrow \mathbb{N}, \quad H_{M}(i)=\operatorname{dim}_{\mathbb{F}}\left(M_{i}\right)
$$

Example/Exercise (Polynomial ring)
For $M=R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we have $H_{M}(i)=\binom{n+i-1}{i}$.

Hilbert Function

From now

- $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- M a finitely generated graded R-module.

Definition
The Hilbert function of a graded R-module M is given by

$$
H_{M}: \mathbb{N} \rightarrow \mathbb{N}, \quad H_{M}(i)=\operatorname{dim}_{\mathbb{F}}\left(M_{i}\right)
$$

Example/Exercise (Polynomial ring)
For $M=R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we have $H_{M}(i)=\binom{n+i-1}{i}$.

Hilbert Function Example

Example
$I=\left(x^{3} y, x^{2} y^{4}\right) \subseteq R=\mathbb{F}[x, y]$

Figure: A picture of the ideal I

i	0	1	2	3	4	5	6	7	8	9	10	11	12
$H_{l}(i)$	0	0	0	0	1	2	4	5	6	7	8	9	10
$H_{R / /}(i)$	1	2	3	4	4	4	3	3	3	3	3	3	3

Hilbert Function Example

Example

$$
I=\left(x^{3} y, x^{2} y^{4}\right) \subseteq R=\mathbb{F}[x, y]
$$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
$H_{l}(i)$	0	0	0	0	1	2	4	5	6	7	8	9	10
$H_{R / /(}(i)$	1	2	3	4	4	4	3	3	3	3	3	3	3

Patterns ?

Hilbert Function Example

Example

$$
I=\left(x^{3} y, x^{2} y^{4}\right) \subseteq R=\mathbb{F}[x, y]
$$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
$H_{l}(i)$	0	0	0	0	1	2	4	5	6	7	8	9	10
$H_{R / / I}(i)$	1	2	3	4	4	4	3	3	3	3	3	3	3

Patterns ?

- $H_{l}(i)$ grows linearly for $i \gg 0: H_{l}(i)=i-2$ for $i \geq 6$.
- $H_{R / I}(i)$ eventually constant for $i \gg 0: H_{R / /}(i)=3$ for $i \geq 6$.

Hilbert Series

Definition

The Hilbert series of a graded module M is the generating function

$$
H S_{M}(t)=\sum_{i \geq 0} H_{M}(i) t^{i}
$$

Example (Polynomial ring)
For $M=R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we have $H S_{M}(t)=\frac{1}{(1-t)^{n}}$.

Hilbert Series Example

Example
If $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, then $H S_{R}(t)=\frac{1}{(1-t)^{n}}$.
Proof:

Hilbert Series Example

Example

If $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, then $H S_{R}(t)=\frac{1}{(1-t)^{n}}$.
Proof:

$$
\begin{aligned}
H S_{R}(t) & =\left(\frac{1}{1-t}\right)^{n} \Leftrightarrow \\
\sum_{i \geq 0} \operatorname{dim}_{\mathbb{F}}\left(R_{i}\right) t^{i} & =\left(1+t+t^{2}+\cdots t^{a}+\cdots\right)^{n} \Leftrightarrow \\
\operatorname{dim}_{\mathbb{F}}\left(R_{i}\right) & =\#\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}+a_{2}+\cdots+a_{n}=i\right\} \Leftrightarrow \\
\operatorname{dim}_{\mathbb{F}}\left(R_{i}\right) & =\#\left\{x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \in R_{i}\right\} \quad \checkmark .
\end{aligned}
$$

Enter Hilbert

Figure: David Hilbert (1862-1943)

Hilbert-Serre Theorem

Theorem (Hilbert-Serre)
If M is a finitely generated graded module over the polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$ then

$$
H S_{M}(t)=\frac{p(t)}{(1-t)^{n}} \text { for some } p(t) \in \mathbb{Z}[t]
$$

In reduced form one can write $H S_{M}(t)=\frac{h(t)}{(1-t)^{d}}$ for unique - h-polynomial $h=h_{0}+h_{1} t+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ with $h(1) \neq 0$; $h_{0}, h_{1}, \ldots, h_{s}$ is called the h-vector of M - $d \in \mathbb{N}, 0 \leq d \leq n$ called the Krull dimension of M.

Corollary (Hilbert)
The Hilbert function of M is eventually given by a polynomial function of degree equal to $d-1$ called the Hilbert polynomial.

Hilbert-Serre Theorem

Theorem (Hilbert-Serre)
If M is a finitely generated graded module over the polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$ then

$$
H S_{M}(t)=\frac{p(t)}{(1-t)^{n}} \text { for some } p(t) \in \mathbb{Z}[t]
$$

In reduced form one can write $H S_{M}(t)=\frac{h(t)}{(1-t)^{d}}$ for unique

- h-polynomial $h=h_{0}+h_{1} t+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ with $h(1) \neq 0$; $h_{0}, h_{1}, \ldots, h_{s}$ is called the h-vector of M
- $d \in \mathbb{N}, 0 \leq d \leq n$ called the Krull dimension of M.

Corollary (Hilbert)
The Hilbert function of M is eventually given by a polynomial function of degree equal to $d-1$ called the Hilbert polynomial.

Hilbert-Serre Theorem

Theorem (Hilbert-Serre)

If M is a finitely generated graded module over the polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$ then

$$
H S_{M}(t)=\frac{p(t)}{(1-t)^{n}} \text { for some } p(t) \in \mathbb{Z}[t]
$$

In reduced form one can write $H S_{M}(t)=\frac{h(t)}{(1-t)^{d}}$ for unique

- h-polynomial $h=h_{0}+h_{1} t+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ with $h(1) \neq 0$; $h_{0}, h_{1}, \ldots, h_{s}$ is called the h-vector of M
- $d \in \mathbb{N}, 0 \leq d \leq n$ called the Krull dimension of M.

Corollary (Hilbert)

The Hilbert function of M is eventually given by a polynomial function of degree equal to $d-1$ called the Hilbert polynomial.

Properties of Hilbert Series

Proposition

1. Additivity in short exact sequences: if
$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of graded modules and maps then

$$
H S_{B}(t)=H S_{A}(t)+H S_{C}(t)
$$

2. Sensitivity to regular elements: if M is a graded module and $f \in R_{d}, d \geq 1$, is a non zero-divisor on M then

$$
H S_{M / F M}(t)=\left(1-t^{d}\right) H S_{M}(t)
$$

Hilbert Series Example

Example

For $R=\mathbb{F}[x, y, z]$ let's compute the Hilbert Series for

$$
M=R /(\underbrace{x^{2}+y^{2}+z^{2}}_{f_{1}}, \underbrace{x^{3}+y^{3}+z^{3}}_{t_{2}}, \underbrace{x^{4}+y^{4}+z^{4}}_{t_{3}})
$$

- f_{1} is a non zero-divisor on R, thus $H S_{\left.R / f_{1}\right)}(t)=\left(1-t^{2}\right) H S_{R}(t)$
- f_{2} is a non zero-divisor on $R /\left(f_{1}\right)$, thus

$$
H S_{R /\left(t_{1}, f_{2}\right)}(t)=\left(1-t^{3}\right) H S_{R /\left(t_{1}\right)}(t)=\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t)
$$

- f_{3} is a non zero-divisor on $R /\left(f_{1}, f_{2}\right)$, thus
$H S_{R /\left(f_{1}, F_{2}, f_{3}\right)}(t)=\left(1-t^{4}\right) H S_{R /\left(f_{1}, t_{2}\right)}(t)=\left(1-t^{4}\right)\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t)$

Hilbert Series Example

Example

For $R=\mathbb{F}[x, y, z]$ let's compute the Hilbert Series for

$$
M=R /(\underbrace{x^{2}+y^{2}+z^{2}}_{f_{1}}, \underbrace{x^{3}+y^{3}+z^{3}}_{f_{2}}, \underbrace{x^{4}+y^{4}+z^{4}}_{t_{3}})
$$

- f_{1} is a non zero-divisor on R, thus $H S_{\left.R / f_{1}\right)}(t)=\left(1-t^{2}\right) H S_{R}(t)$
- f_{2} is a non zero-divisor on $R /\left(f_{1}\right)$, thus $H S_{R /\left(f_{1}, f_{2}\right)}(t)=\left(1-t^{3}\right) H S_{R /\left(f_{1}\right)}(t)=\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t)$
- f_{3} is a non zero-divisor on $R /\left(f_{1}, f_{2}\right)$, thus

Hilbert Series Example

Example

For $R=\mathbb{F}[x, y, z]$ let's compute the Hilbert Series for

$$
M=R /(\underbrace{x^{2}+y^{2}+z^{2}}_{f_{1}}, \underbrace{x^{3}+y^{3}+z^{3}}_{f_{2}}, \underbrace{x^{4}+y^{4}+z^{4}}_{f_{3}})
$$

- f_{1} is a non zero-divisor on R, thus $H S_{\left.R / f_{1}\right)}(t)=\left(1-t^{2}\right) H S_{R}(t)$
- f_{2} is a non zero-divisor on $R /\left(f_{1}\right)$, thus

$$
H S_{R /\left(f_{1}, f_{2}\right)}(t)=\left(1-t^{3}\right) H S_{R /\left(f_{1}\right)}(t)=\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t)
$$

- f_{3} is a non zero-divisor on $R /\left(f_{1}, f_{2}\right)$, thus

$$
\begin{aligned}
H S_{R /\left(f_{1}, f_{2}, f_{3}\right)}(t) & =\left(1-t^{4}\right) H S_{R /\left(f_{1}, f_{2}\right)}(t)=\left(1-t^{4}\right)\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t) \\
& =\frac{\left(1-t^{4}\right)\left(1-t^{3}\right)\left(1-t^{2}\right)}{(1-t)^{3}} \\
& =t^{6}+3 t^{5}+5 t^{4}+6 t^{3}+5 t^{2}+3 t+1 .
\end{aligned}
$$

Classification of Hilbert functions

Figure: F. Macaulay (1862-1937) and R. Stanley.

Classification Problem

Question
What are all the possible Hilbert functions or Hilbert series or h-vectors of (cyclic) graded modules satisfying a given property?

Classification Problem

Question

What are all the possible Hilbert functions or Hilbert series or h-vectors of (cyclic) graded modules satisfying a given property?

Property of $M=R / I$	Description of H_{M}	Reference
Arbitrary	"admissible" (a combinatorial condition)	Macaulay
Complete intersection	$H S_{M}(t)=\frac{\prod_{i=1}^{s}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}$	the audience
Gorenstein	the h -vector must be symmetric	Stanley

Geometric Classification Problem

Question
What are all the possible Hilbert functions of cyclic graded domains R / P ?

- R / P is a domain iff P is a prime ideal
- the vanishing set of a prime ideal P,
$V(P)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}\left(\right.\right.$ or $\left.\left.\mathbb{m}^{n-1}\right) \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in P\right\}$
is an irreducible algebraic variety

Geometric Classification Problem

Question

What are all the possible Hilbert functions of cyclic graded domains R / P ?

- R / P is a domain iff P is a prime ideal
- the vanishing set of a prime ideal P,

$$
V(P)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n}\left(\text { or } \mathbb{P}^{n-1}\right) \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in P\right\}
$$

is an irreducible algebraic variety

Geometric Classification Problem

Question

What are all the possible Hilbert functions of cyclic graded domains R / P ?

- R / P is a domain iff P is a prime ideal
- the vanishing set of a prime ideal P,

$$
V(P)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n}\left(\text { or } \mathbb{P}^{n-1}\right) \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in P\right\}
$$

is an irreducible algebraic variety

Figure: An algebraic variety $V\left(x^{2}+y^{2}-z^{2}\right)$.

Bertini's Theorem

Theorem (Bertini)
Let R/P be a Cohen-Macaulay ${ }^{1}$ domain of Krull dimension at least three over an infinite field \mathbb{F}. Then there exists $f \in R_{1}$ such that $R / P+(f)$ is also a domain.

Figure: An illustration of Bertini's theorem.

[^0]
Reduction to the case of curves

Corollary (Stanley)

Let R / P be a Cohen-Macaulay graded domain of dimension greater or equal than two. Then the h-vector of R / P is also the h-vector of a Cohen-Macaulay graded domain of Krull dimension two (that is, the homogeneous coordinate ring of an irreducible projective curve).

Figure: An algebraic variety $V\left(x^{2}+y^{2}-z^{2}\right)$ of Krull dimension two in affine space and in projective space.

Further reduction to points with UPP

Theorem (Harris)

Let P be a prime ideal such that the Krull dimension of R / P is 2. Then there exists $f \in R_{1}$ (a hyperplane) such that $V(P+(f))$ (the hyperplane section) is a set Γ of d points such that for every subset
$\Gamma^{\prime} \subseteq \Gamma$ of d^{\prime} points and for every $i \geq 0$ we have

$$
H_{l_{\Gamma(i)}}=\min \left\{d^{\prime}, H_{l_{\Gamma}^{\prime}(i)}\right\}
$$

Definition

A set Γ of points satisfying the condition above is said to have the uniform position property (UPP).

UPP Example

Example/Exercise

h-vector 1221 (complete intersection on a conic)
This has UPP.

h-vector 1221 (complete intersection)
This has CB but not UPP.

h-vector 1221
This has neither CB nor UPP.

Figure: Six points on a conic in \mathbb{P}^{2} and the UPP.

Partial classification

Question (Reformulation of Classification Question)
What are all the possible Hilbert functions of points in \mathbb{P}^{n} satisfying the uniform position property?

There is a partial answer in the case $n=2$:

Theorem
A finite sequence of natural numbers is the h-vector of R/I, where $V(I)$ is a set of points in \mathbb{P}^{2} satisfying UPP if and only if $h_{0}=1, h_{1}=2$ and the h-vector of R / I is admissible and of decreasing type, meaning if $h_{i+1}<h_{i}$ then $h_{j+1}<h_{j}$ for all $j \geq i$.

Partial classification

Question (Reformulation of Classification Question)

What are all the possible Hilbert functions of points in \mathbb{P}^{n} satisfying the uniform position property?

There is a partial answer in the case $n=2$:

Theorem

A finite sequence of natural numbers is the h-vector of R / I, where $V(I)$ is a set of points in \mathbb{P}^{2} satisfying UPP if and only if $h_{0}=1, h_{1}=2$ and the h-vector of R / I is admissible and of decreasing type, meaning if $h_{i+1}<h_{i}$ then $h_{j+1}<h_{j}$ for all $j \geq i$.

Open Problems

Figure: You ?

The Hilbert function of a generic algebra

Conjecture (Fröberg)
Let F_{1}, \ldots, F_{r} be homogeneous polynomials of degrees $d_{1}, \ldots, d_{r} \geq 1$ in a polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$.
If F_{1}, \ldots, F_{r} are chosen "randomly" and $I=\left(F_{1}, \ldots, F_{r}\right)$, then

$$
H S_{R / /}(t)=\frac{\prod_{i=1}^{r}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}
$$

Stanley's unimodality conjecture

Conjecture (Stanley)

The h-vector of a graded Cohen-Macaulay domain is unimodal,
i.e. there exists $0 \leq j \leq s$ such that

$$
h_{0} \leq h_{1} \leq h_{2} \ldots \leq h_{j} \geq \ldots \geq h_{s-1} \geq h_{s}
$$

Points with UPP

Question (Harris)

What are the possible Hilbert functions of points in $\mathbb{P}^{n}, n \geq 4$
satisfying the UPP?

Nagata's conjecture

An ideal defining a set of fat points is an ideal of the form

$$
I=I_{p_{1}}^{m_{1}} \cap I_{p_{2}}^{m_{2}} \cap \cdots \cap I_{p_{r}}^{m_{r}}
$$

where $I_{p_{i}}$ is the ideal defining a point $p_{i} \in \mathbb{P}^{n}$.

Conjecture (Nagata)
If $I=I_{p_{1}}^{m_{1}} \cap I_{p_{2}}^{m_{2}} \cap \cdots \cap I_{p_{r}}^{m_{r}}$ is an ideal defining r fat points in \mathbb{P}^{n} and $d>0$ is an integer such that $H_{l}(d)>0$ then

$$
d \geq \frac{m_{1}+m_{2}+\cdots+m_{r}}{\sqrt{n}}
$$

References

围 Fröberg，An inequality for Hilbert series of graded algebras．Math． Scand． 56 （1985），no．2，117－144．
圊 J．Harris，Curves in projective space，Montreal：Les Presses de l＇Université de Montreal， 1982.
F．S．Macaulay，Some properties of enumeration in the theory of modular systems，Proc．London Math．Soc．， 26 （1927），531－555．
R R．Maggioni，A．Ragusa，The Hilbert function of generic plane sections of curves of \mathbb{P}^{3} ．Invent．Math． 91 （1988），no．2，253－258．
囯 M．Nagata，On the 14－th problem of Hilbert，Am．J．Math．， 81 （1959）， 766－772．
國 R．P．Stanley，Hilbert functions of graded algebras，Advances in Math． 28 （1978），no．1，57－83．
R．R．P．Stanley，On the Hilbert function of a graded Cohen－Macaulay domain．J．Pure Appl．Algebra 73 （1991），no．3，307－314．

Thank you!

[^0]: ${ }^{1}$ a technical condition which allows for induction on the Krull dimension.

