
HILBERT FUNCTIONS IN ALGEBRA AND GEOMETRY

(GWCAWMMG WORKSHOP)

ALEXANDRA SECELEANU

1. What is a Hilbert function?

Definition 1. A commutative unital ring R is called a graded ring if it can be written as a direct
sum of subgroups

R =
⊕

i≥0
Ri such that RiRj ⊆ Ri+j , ∀i, j ≥ 0.

Elements of Ri are called homogeneous elements of degree i.

Example. • The main examples are polynomial ring in several variables R = F[x1, . . . , xn],
where Ri is the set of all homogeneous polynomials of degree i.
• For any ideal I, the blowup (Rees) algebra R(I) =

⊕
i≥0 I

i is a graded ring with the given
direct sum decomposition.

Definition 2. A module M over a graded ring R is called a graded module if it can be written as
a direct sum of subgroups

M =
⊕

j≥0
Mj such that RiMj ⊆Mi+j ∀i, j ≥ 0.

Example. If R is a graded ring and I is a homogeneous ideal (generated by homogeneous elements
of R) then the ideal I as well as the quotient ring R/I are graded R-modules.

From now on we focus on R = F[x1, . . . , xn] and M a finitely generated graded R-module. (The
ideas presented here apply more generally when R is a graded ring with R0 = F that is finitely
generated as an F-algebra.)

Definition 3. The Hilbert function of a graded module M is

HM : N→ N, HM (i) = dimF(Mi).

Example (Polynomial ring). For R = F[x1, . . . , xn] , the Hilbert function is HR(i) =
(
n+i−1

i

)
.

Example (Monomial ideal). For I = (x3y, x2y4) ⊆ R = F[x, y], the Hilbert function of I at i is
the number of black dots on a diagonal with intercept x = i while the Hilbert function of R/I at i
is the number of white dots on a diagonal with intercept x = i.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
HI(i) 0 0 0 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
HR/I(i) 1 2 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Patterns:

• HI(i) grows linearly for i� 0: HI(i) = i− 2 for i ≥ 6.
• HR/I(i) eventually constant for i� 0: HR/I(i) = 3 for i ≥ 6.
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Dimension theory

Hilbert function of a monomial ideal

Consider the ideal I =
⌦
x3y, x2y4

↵
.

0 1 2 3 4 5 6

The Hilbert function at s is the number of white dots below a diagonal
with intercept x = s.

s 0 1 2 3 4 5 6 7 8 ...

H(s) 1 3 6 10 14 18 21 24 27 ...

HI(s) = 3s + ✏(s), where ✏(s) is eventually constant: ✏(s) = 3 for s � 6.

What is general form of H(s) for a monomial ideal?
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Figure 1. A picture of the ideal I

One often encodes a sequence of numbers into a generating series. The generating series for the
Hilbert function is called the Hilbert series.

Definition 4. The Hilbert series of a graded module M is

HSM (t) =
∑

i≥0
HM (i)ti.

Example (Polynomial ring). For M = R = F[x1, . . . , xn], we have HSM (t) = 1
(1−t)n .

Proof for n = 3.

F [x, y, z] =
⊕

i≥0
Hi, Hi = homogeneous degree i polynomials

Hi = SpanF {xaybzc | a + b + c = i}

dimF (Hi) = [ti]
(

(1 + t + · · ·+ ta + · · · )(1 + t + · · ·+ tb + · · · )
(1 + t + · · ·+ tc + · · · ))

= [ti]

(
1

1− t
· 1

1− t
· 1

1− t

)
= [ti]

(
1

(1− t)3

)

Thus

HSF [x,y,z](t) =
1

(1− t)3
.

�

Example. For R = F[x, y, z] and

M = R/(x2 + y2 + z2, x3 + y3 + z3, x4 + y4 + z4)

the Hilbert series is

HSM (t) =
(1− t2)(1− t3)(1− t4)

(1− t)3
= t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t + 1.

Patterns:

• the series HSM can be written as a rational function with denominator (1− t)n.
• in the second example, the nonzero coefficients form a symmetric and unimodal sequence.
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2. Enter Hilbert

Theorem 5 (Hilbert-Serre). If M is a finitely generated graded module over the polynomial ring
R = F [x1, . . . , xn] then

HSM (t) =
p(t)

(1− t)n
for some p(t) ∈ Z[t].

Considering the reduced form of the expression above, one can write HSM (t) = h(t)
(1−t)d for unique

• h = h0 + h1t + . . . + hst
s ∈ Z[t] such that h(1) 6= 0; h(t) is called the h-polynomial of M

and (h0, h1, . . . , hs) is called the h-vector of M
• d ∈ Z, 0 ≤ d ≤ n called the Krull dimension of M .

Corollary 6 (Hilbert). The Hilbert function of M is eventually given by a polynomial function of
degree equal to d− 1 called the Hilbert polynomial of M .

The proof of this theorem involves graded free resolutions, which are beyond the scope of these
notes. However the main properties involved in the proof are the following:

Proposition 7 (Properties of Hilbert Series).

(1) Additivity in short exact sequences: if 0 → A → B → C → 0 is a short exact sequence of
graded modules and maps then

HSB(t) = HSA(t) + HSC(t).

(2) Sensitivity to regular elements: if M is a graded module and f ∈ Rd, d ≥ 1 is a non
zero-divisor on M then

HSM/fM (t) = (1− td)HSM (t).

Example. For R = F[x, y, z] let’s compute the Hilbert Series for

M = R/(x2 + y2 + z2︸ ︷︷ ︸
f1

, x3 + y3 + z3︸ ︷︷ ︸
f2

, x4 + y4 + z4︸ ︷︷ ︸
f3

)

.

• f1 is a non zero-divisor on R, thus HSR/f1)(t) = (1− t2)HSR(t)
• f2 is a non zero-divisor on R/(f2), thus

HSR/(f1,f2)(t) = (1− t3)HSR/(f1)(t) = (1− t3)(1− t2)HSR(t)

• f3 is a non zero-divisor on R/(f1, f2), thus

HSR/(f1,f2,f3)(t) = (1− t4)HSR/(f1,f2)(t) = (1− t4)(1− t3)(1− t2)HSR(t)

=
(1− t4)(1− t3)(1− t2)

(1− t)3
= t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t + 1.

Note that here every time we add one generator we also reduce the Krull dimension by one

Ring R R/(f1) R/(f1, f2) R/(f1, f2, f3)
Krull dimension 3 2 1 0

.

This property of R/(f1, f2, f3) is called being a complete intersection.
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3. Classification of Hilbert Functions

Question 8. What are all the possible Hilbert functions/ Hilbert series of graded modules M = R/I
satisfying a given property?

Property of M = R/I Description of HM Reference

Arbitrary combinatorial condition Macaulay [3]

Complete intersection HSM (t) =
∏s

i=1(1−tdi )
(1−t)n you, the audience

Gorenstein the h-vector must be symmetric Stanley [6]

For the rest of the notes we focus on the question

Question 9. What are all the possible Hilbert functions of graded domains R/P?

Recall that

• R/P is a domain iff P is a prime ideal
• the vanishing set of a (prime) ideal V (P ) = {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0,∀f ∈ P}

is an (irreducible) algebraic variety

Then

• HP (d) is the number of linearly hypersurfaces of degree d that contain the variety V (P ).

Figure 2. An algebraic variety V (x2 + y2 − z2) of Krull dimension two.

Theorem 10 (Bertini). Let R/P be a Cohen-Macaulay 1 domain of Krull dimension at least three
over an infinite field F. Then there exists f ∈ R1 such that R/P + (f) is also a domain.

Figure 3. An illustration of Bertini’s theorem.

1a technical condition which insures that if dim(R/P ) = d then there is a sequence f1, . . . , fd ∈ R+ such that for
1 ≤ i ≤ d, fi is a non zero-divisor on R/P + (f1, . . . , fi−1).
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Corollary 11 (Stanley [7]). Let R/P be a Cohen-Macaulay graded domain of dimension greater or
equal than two. Then the h-vector of R/P is also the h-vector of a Cohen-Macaulay graded domain
of dimension two (that is, the homogeneous coordinate ring of an irreducible curve).

A further step after using Bertini’s theorem would be to further intersect the curve from Corollary
11 with a line ending up with a set of points. After slicing by a general enough line, we get a set of
points Γ such that all subsets of Γ of the same size have the same Hilbert function. This property
is called the uniform position property (UPP).

Theorem 12 (Harris [2]). Let P be a prime ideal such that the Krull dimension of R/P is 2. Then
there exists f ∈ R1 such that V (P + (f)) is a (reduced) set Γ of d points such that for every subset
Γ′ ⊆ Γ of d′ points and for every i ≥ 0 we have

HIΓ(i) = min{d′, HI′Γ(i)
}.

Example. Six points of a conic in P2 are the vanishing set of a complete intersection ideal generated
by a degree 2 equation (defining a conic) and a degree 3 equation (defining a cubic). Only the conic
is pictured below. This could be irreducible as pictured in the first case or a union of two lines as
in the last two cases.

76 J.C. Migliore - U. Nagel

The integer ℓ in Proposition 6 is related to the integers in the equation (4). In fact, we have

COROLLARY 6. Let X be arithmetically Gorenstein with minimal free resolution

0 → R(−a) → Fc−1 → · · · → F1 → R → R/IX → 0

and assume that OX ∼= ωX (ℓ). Then ℓ = n + 1− a.

If A is Gorenstein then the integer s, the last degree in which the h-vector is non-zero, is
called the socle degree of Ā, the Artinian reduction of A = R/IX .

There is a very useful criterion for zeroschemes to be arithmetically Gorenstein. To explain
it, we will need a new notion. For now we will assume that our zeroschemes are reduced,
although the necessity for this was removed by Kreuzer [62].

DEFINITION 13. Let Z ⊂ Pn be a finite reduced set of points. Assume that s+1 = reg(IX ),
i.e. s is the last degree in which the h-vector of Z is non-zero. Then Z has the Cayley-Bacharach
property (CB) if, for every subset Y ⊂ Z consisting of |Z | − 1 points, we have hR/IY (s − 1) =
hR/IZ (s− 1). Z has the Uniform Position property (UPP) if any two subsets Y,Y ′ of (the same)
arbitrary cardinality have the same Hilbert function, which necessarily is

hR/IY (t) = min{hR/IZ (t), |Y |} for all t.

EXAMPLE 8. The Cayley-Bacharach property is a weaker version of the Uniform Position
Property. For example, in P2 consider the following examples.

✬
✫

✩
✪• •

•

•

•

•

h-vector 1 2 2 1 (complete intersection
on a conic)

This has UPP.

•

•

•

•

•

• h-vector 1 2 2 1 (complete intersection)

This has CB but not UPP.

• •

•

•

•

•

h-vector 1 2 2 1

This has neither CB nor UPP.

THEOREM 1 ([31]). A reduced set of points Z is arithmetically Gorenstein if and only if
its h-vector is symmetric and it has the Cayley-Bacharach property.

EXAMPLE 9. A set of n + 2 points in Pn in linear general position is arithmetically Goren-
stein. In particular, a set of 5 points in P3 is arithmetically Gorenstein, so we see that 4 points

Figure 4. Six points on a conic in P2 and the UPP.

Question 13 (Reformulation of Question 9). What are all the possible Hilbert functions of points
in Pn satisfying the UPP?

There is a partial answer in the case n = 2:

Theorem 14 ([4]). A finite sequence of natural numbers is the h-vector of R/I, where V (I) is a
set of points in P2 satisfying UPP if and only if h0 = 1, h1 = 2 and the h-vector of is admissible
and of decreasing type, meaning that if hi+1 < hi then hj+1 < hj for all j ≥ i.

The moral of this section is that one can often reduce (in the Cohen-Macaulay case) the com-
putation of the Hilbert function of a high-dimensional graded module to that of a module of Krull
dimension 1 (or 0). These cases, which correspond to ideals defining (fat) points in Pn or Artinian
algebras are thus particularly important.
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4. Open questions

There are many open questions regarding Hilbert functions. I list some that are closest to my
interests.

Conjecture 15 (The Hilbert function of a generic algebra [1]). Let F1, . . . , Fr be homogeneous
polynomials of degrees d1, . . . , dr ≥ 1 in a polynomial ring R = F [x1, . . . , xn]. If F1, . . . , Fr are
chosen “randomly” and I = (F1, . . . , Fr) then

HSR/I(t) =

∏r
i=1(1− tdi)

(1− t)n
.

Conjecture 16 (Stanley’s unimodality conjecture [7]). The h-vector of a graded Cohen-Macaulay
domain is unimodal, i.e. there exists 0 ≤ j ≤ s such that

h0 ≤ h1 ≤ h2 . . . ≤ hj ≥ . . . ≥ hs−1 ≥ hs

.

Question 17 (Harris [2]). What are the possible Hilbert functions of points in Pn, n ≥ 4 satisfying
the UPP?

An ideal defining a set of fat points is an ideal of the form

I = Im1
p1
∩ Im2

p2
∩ · · · ∩ Imr

pr

where Ipi is the ideal defining a point pi ∈ Pn.
The following conjecture states that any hypersurface vanishing at points p1, . . . , pr ∈ Pn with

to order m1, . . . ,mr respectively must have degree d ≥ m1+m2+···+mr√
n

.

Conjecture 18 (Nagata’s conjecture [5]). If I = Im1
p1
∩ Im2

p2
∩ · · · ∩ Imr

pr is an ideal defining r fat
points in Pn and d > 0 is an integer such that HI(d) > 0 then

√
n · d ≥ m1 + m2 + · · ·+ mr.
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Exercises on Hilbert functions

(1) (a) Prove that for R = F[x1, . . . , xn] , the Hilbert function is HR(i) =
(
n+i−1

i

)
using a

combinatorial argument.

(b) Prove that for R = F[x1, . . . , xn] , the Hilbert function is HR(i) =
(
n+i−1

i

)
and the

Hilbert series is HSR(t) =
1

(1−t)n by induction on n.

(2) Prove that if R = F[x1, . . . , xn] and f1, . . . , fd ∈ R+ are such that for 1 ≤ i ≤ d, fi is a
non zero-divisor on R/(f1, . . . , fi−1), then

HSR/I(t) =

∏s
i=1(1− tdi)

(1− t)n
.

(3) Prove that for R = F[x, y, z] and I = (F,G) such that deg(F ) = 2, deg(G) = 3 and
gcd(F,G) = 1 the h-vector of R/I is 1, 2, 2, 1.

(4) (a) Prove that a set of six points in P2 that lie on two lines does not satisfy the Uniform
Position Property.

(b) Prove that a set of six points in P2 that lie on an irreducible conic satisfies the Uniform
Position Property.

(5) Does there exist a set of points in P3 having the Uniform Position Property and h-vector
1, 3, 6, 5, 6?

(6) Prove that the h-vector of a Cohen-Macaulay graded domain of dimension greater or equal
to two is also the h-vector of a graded domain of dimension two using Bertini’s Theorem.

(7) Let I be a homogeneous ideal of R = F[x1, . . . , xn] and m = (x1, . . . , xn). The fiber ring
of I is F(I) = ⊕i≥0 I

i/mI i. Show that F(I) is an F-algebra and find what the Hilbert

function of F(I) counts.

(8) A graded finite dimensional F-algebra A is called Gorenstein provided that
• A = A0 ⊕ A1 ⊕ · · · ⊕ As with As

∼= F and
• for any 0 ≤ i ≤ s and a ∈ Ai there is a′ ∈ As−i such that aa′ 6= 0.

Prove that h-vectors of Gorenstein algebras are symmetric (hi = hs−i) using the following
outline:

Let R = F[x1, . . . , xn], A = R/I and J = 0 :A I .

(a) show that Js−i = ker(As−i → Hom(Ii, As));
(b) show that there is an injective map Js−i → Hom(A/Ii, As);
(c) deduce that HA(s− i) ≤ HI(i) +HJ(s− i) ≤ HA(i) for all 0 ≤ i ≤ s;
(d) conclude that HA(s− i) = HA(i) for all 0 ≤ i ≤ s.
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