HILBERT FUNCTIONS IN ALGEBRA AND GEOMETRY (GWCAWMMG WORKSHOP)

ALEXANDRA SECELEANU

1. What is a Hilbert function?

Definition 1. A commutative unital ring R is called a graded ring if it can be written as a direct sum of subgroups

$$
R=\bigoplus_{i \geq 0} R_{i} \quad \text { such that } \quad R_{i} R_{j} \subseteq R_{i+j}, \forall i, j \geq 0
$$

Elements of R_{i} are called homogeneous elements of degree i.
Example. - The main examples are polynomial ring in several variables $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, where R_{i} is the set of all homogeneous polynomials of degree i.

- For any ideal I, the blowup (Rees) algebra $\mathcal{R}(I)=\bigoplus_{i \geq 0} I^{i}$ is a graded ring with the given direct sum decomposition.

Definition 2. A module M over a graded ring R is called a graded module if it can be written as a direct sum of subgroups

$$
M=\bigoplus_{j \geq 0} M_{j} \quad \text { such that } \quad R_{i} M_{j} \subseteq M_{i+j} \forall i, j \geq 0
$$

Example. If R is a graded ring and I is a homogeneous ideal (generated by homogeneous elements of R) then the ideal I as well as the quotient ring R / I are graded R-modules.

From now on we focus on $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and M a finitely generated graded R-module. (The ideas presented here apply more generally when R is a graded ring with $R_{0}=\mathbb{F}$ that is finitely generated as an \mathbb{F}-algebra.)

Definition 3. The Hilbert function of a graded module M is

$$
H_{M}: \mathbb{N} \rightarrow \mathbb{N}, \quad H_{M}(i)=\operatorname{dim}_{\mathbb{F}}\left(M_{i}\right)
$$

Example (Polynomial ring). For $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the Hilbert function is $H_{R}(i)=\binom{n+i-1}{i}$.
Example (Monomial ideal). For $I=\left(x^{3} y, x^{2} y^{4}\right) \subseteq R=\mathbb{F}[x, y]$, the Hilbert function of I at i is the number of black dots on a diagonal with intercept $x=i$ while the Hilbert function of R / I at i is the number of white dots on a diagonal with intercept $x=i$.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$H_{I}(i)$	0	0	0	0	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$H_{R / I}(i)$	1	2	3	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Patterns:

- $H_{I}(i)$ grows linearly for $i \gg 0: H_{I}(i)=i-2$ for $i \geq 6$.
- $H_{R / I}(i)$ eventually constant for $i \gg 0: H_{R / I}(i)=3$ for $i \geq 6$.

Figure 1. A picture of the ideal I

One often encodes a sequence of numbers into a generating series. The generating series for the Hilbert function is called the Hilbert series.

Definition 4. The Hilbert series of a graded module M is

$$
H S_{M}(t)=\sum_{i \geq 0} H_{M}(i) t^{i}
$$

Example (Polynomial ring). For $M=R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we have $H S_{M}(t)=\frac{1}{(1-t)^{n}}$.
Proof for $n=3$.

$$
\begin{aligned}
F[x, y, z]= & \bigoplus_{i \geq 0} H_{i}, \quad H_{i}=\text { homogeneous degree } i \text { polynomials } \\
& H_{i}=\operatorname{Span}_{F}\left\{x^{a} y^{b} z^{c} \mid a+b+c=i\right\} \\
\operatorname{dim}_{F}\left(H_{i}\right)= & {\left[t^{i}\right]\left(\left(1+t+\cdots+t^{a}+\cdots\right)\left(1+t+\cdots+t^{b}+\cdots\right)\right.} \\
& \left.\left(1+t+\cdots+t^{c}+\cdots\right)\right) \\
= & {\left[t^{i}\right]\left(\frac{1}{1-t} \cdot \frac{1}{1-t} \cdot \frac{1}{1-t}\right)=\left[t^{i}\right]\left(\frac{1}{(1-t)^{3}}\right) }
\end{aligned}
$$

Thus

$$
H S_{F[x, y, z]}(t)=\frac{1}{(1-t)^{3}} .
$$

Example. For $R=\mathbb{F}[x, y, z]$ and

$$
M=R /\left(x^{2}+y^{2}+z^{2}, x^{3}+y^{3}+z^{3}, x^{4}+y^{4}+z^{4}\right)
$$

the Hilbert series is

$$
H S_{M}(t)=\frac{\left(1-t^{2}\right)\left(1-t^{3}\right)\left(1-t^{4}\right)}{(1-t)^{3}}=t^{6}+3 t^{5}+5 t^{4}+6 t^{3}+5 t^{2}+3 t+1
$$

Patterns:

- the series $H S_{M}$ can be written as a rational function with denominator $(1-t)^{n}$.
- in the second example, the nonzero coefficients form a symmetric and unimodal sequence.

2. Enter Hilbert

Theorem 5 (Hilbert-Serre). If M is a finitely generated graded module over the polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$ then

$$
H S_{M}(t)=\frac{p(t)}{(1-t)^{n}} \text { for some } p(t) \in \mathbb{Z}[t] .
$$

Considering the reduced form of the expression above, one can write $H S_{M}(t)=\frac{h(t)}{(1-t)^{d}}$ for unique

- $h=h_{0}+h_{1} t+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ such that $h(1) \neq 0 ; h(t)$ is called the h-polynomial of M and $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ is called the h-vector of M
- $d \in \mathbb{Z}, 0 \leq d \leq n$ called the Krull dimension of M.

Corollary 6 (Hilbert). The Hilbert function of M is eventually given by a polynomial function of degree equal to $d-1$ called the Hilbert polynomial of M.

The proof of this theorem involves graded free resolutions, which are beyond the scope of these notes. However the main properties involved in the proof are the following:

Proposition 7 (Properties of Hilbert Series).
(1) Additivity in short exact sequences: if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of graded modules and maps then

$$
H S_{B}(t)=H S_{A}(t)+H S_{C}(t) .
$$

(2) Sensitivity to regular elements: if M is a graded module and $f \in R_{d}, d \geq 1$ is a non zero-divisor on M then

$$
H S_{M / f M}(t)=\left(1-t^{d}\right) H S_{M}(t)
$$

Example. For $R=\mathbb{F}[x, y, z]$ let's compute the Hilbert Series for

$$
M=R /(\underbrace{x^{2}+y^{2}+z^{2}}_{f_{1}}, \underbrace{x^{3}+y^{3}+z^{3}}_{f_{2}}, \underbrace{x^{4}+y^{4}+z^{4}}_{f_{3}})
$$

- f_{1} is a non zero-divisor on R, thus $H S_{\left.R / f_{1}\right)}(t)=\left(1-t^{2}\right) H S_{R}(t)$
- f_{2} is a non zero-divisor on $R /\left(f_{2}\right)$, thus

$$
H S_{R /\left(f_{1}, f_{2}\right)}(t)=\left(1-t^{3}\right) H S_{R /\left(f_{1}\right)}(t)=\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t)
$$

- f_{3} is a non zero-divisor on $R /\left(f_{1}, f_{2}\right)$, thus

$$
\begin{aligned}
H S_{R /\left(f_{1}, f_{2}, f_{3}\right)}(t) & =\left(1-t^{4}\right) H S_{R /\left(f_{1}, f_{2}\right)}(t)=\left(1-t^{4}\right)\left(1-t^{3}\right)\left(1-t^{2}\right) H S_{R}(t) \\
& =\frac{\left(1-t^{4}\right)\left(1-t^{3}\right)\left(1-t^{2}\right)}{(1-t)^{3}}=t^{6}+3 t^{5}+5 t^{4}+6 t^{3}+5 t^{2}+3 t+1 .
\end{aligned}
$$

Note that here every time we add one generator we also reduce the Krull dimension by one

Ring	R	$R /\left(f_{1}\right)$	$R /\left(f_{1}, f_{2}\right)$	$R /\left(f_{1}, f_{2}, f_{3}\right)$
Krull dimension	3	2	1	0

This property of $R /\left(f_{1}, f_{2}, f_{3}\right)$ is called being a complete intersection.

3. Classification of Hilbert Functions

Question 8. What are all the possible Hilbert functions/ Hilbert series of graded modules $M=R / I$ satisfying a given property?

Property of $M=R / I$	Description of H_{M}	Reference
Arbitrary	combinatorial condition	Macaulay [3]
Complete intersection	$H S_{M}(t)=\frac{\prod_{i=1}^{s}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}$	you, the audience
Gorenstein	the h-vector must be symmetric	Stanley [6]

For the rest of the notes we focus on the question
Question 9. What are all the possible Hilbert functions of graded domains R / P ?
Recall that

- R / P is a domain iff P is a prime ideal
- the vanishing set of a (prime) ideal $V(P)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in P\right\}$ is an (irreducible) algebraic variety
Then
- $H_{P}(d)$ is the number of linearly hypersurfaces of degree d that contain the variety $V(P)$.

Figure 2. An algebraic variety $V\left(x^{2}+y^{2}-z^{2}\right)$ of Krull dimension two.
Theorem 10 (Bertini). Let R / P be a Cohen-Macaulay ${ }^{1}$ domain of Krull dimension at least three over an infinite field \mathbb{F}. Then there exists $f \in R_{1}$ such that $R / P+(f)$ is also a domain.

Figure 3. An illustration of Bertini's theorem.

[^0]Corollary 11 (Stanley [7]). Let R / P be a Cohen-Macaulay graded domain of dimension greater or equal than two. Then the h-vector of R / P is also the h-vector of a Cohen-Macaulay graded domain of dimension two (that is, the homogeneous coordinate ring of an irreducible curve).

A further step after using Bertini's theorem would be to further intersect the curve from Corollary 11 with a line ending up with a set of points. After slicing by a general enough line, we get a set of points Γ such that all subsets of Γ of the same size have the same Hilbert function. This property is called the uniform position property (UPP).
Theorem 12 (Harris [2]). Let P be a prime ideal such that the Krull dimension of R / P is 2. Then there exists $f \in R_{1}$ such that $V(P+(f))$ is a (reduced) set Γ of d points such that for every subset $\Gamma^{\prime} \subseteq \Gamma$ of d^{\prime} points and for every $i \geq 0$ we have

$$
H_{I_{\Gamma}(i)}=\min \left\{d^{\prime}, H_{I_{\Gamma}^{\prime}(i)}\right\} .
$$

Example. Six points of a conic in \mathbb{P}^{2} are the vanishing set of a complete intersection ideal generated by a degree 2 equation (defining a conic) and a degree 3 equation (defining a cubic). Only the conic is pictured below. This could be irreducible as pictured in the first case or a union of two lines as in the last two cases.

Figure 4. Six points on a conic in \mathbb{P}^{2} and the UPP.
Question 13 (Reformulation of Question 9). What are all the possible Hilbert functions of points in \mathbb{P}^{n} satisfying the UPP?

There is a partial answer in the case $n=2$:
Theorem 14 ([4]). A finite sequence of natural numbers is the h-vector of R / I, where $V(I)$ is a set of points in \mathbb{P}^{2} satisfying UPP if and only if $h_{0}=1, h_{1}=2$ and the h-vector of is admissible and of decreasing type, meaning that if $h_{i+1}<h_{i}$ then $h_{j+1}<h_{j}$ for all $j \geq i$.

The moral of this section is that one can often reduce (in the Cohen-Macaulay case) the computation of the Hilbert function of a high-dimensional graded module to that of a module of Krull dimension 1 (or 0). These cases, which correspond to ideals defining (fat) points in \mathbb{P}^{n} or Artinian algebras are thus particularly important.

4. Open questions

There are many open questions regarding Hilbert functions. I list some that are closest to my interests.

Conjecture 15 (The Hilbert function of a generic algebra [1]). Let F_{1}, \ldots, F_{r} be homogeneous polynomials of degrees $d_{1}, \ldots, d_{r} \geq 1$ in a polynomial ring $R=F\left[x_{1}, \ldots, x_{n}\right]$. If F_{1}, \ldots, F_{r} are chosen "randomly" and $I=\left(F_{1}, \ldots, F_{r}\right)$ then

$$
H S_{R / I}(t)=\frac{\prod_{i=1}^{r}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}
$$

Conjecture 16 (Stanley's unimodality conjecture [7]). The h-vector of a graded Cohen-Macaulay domain is unimodal, i.e. there exists $0 \leq j \leq s$ such that

$$
h_{0} \leq h_{1} \leq h_{2} \ldots \leq h_{j} \geq \ldots \geq h_{s-1} \geq h_{s}
$$

Question 17 (Harris [2]). What are the possible Hilbert functions of points in $\mathbb{P}^{n}, n \geq 4$ satisfying the UPP?

An ideal defining a set of fat points is an ideal of the form

$$
I=I_{p_{1}}^{m_{1}} \cap I_{p_{2}}^{m_{2}} \cap \cdots \cap I_{p_{r}}^{m_{r}}
$$

where $I_{p_{i}}$ is the ideal defining a point $p_{i} \in \mathbb{P}^{n}$.
The following conjecture states that any hypersurface vanishing at points $p_{1}, \ldots, p_{r} \in \mathbb{P}^{n}$ with to order m_{1}, \ldots, m_{r} respectively must have degree $d \geq \frac{m_{1}+m_{2}+\cdots+m_{r}}{\sqrt{n}}$.
Conjecture 18 (Nagata's conjecture [5]). If $I=I_{p_{1}}^{m_{1}} \cap I_{p_{2}}^{m_{2}} \cap \cdots \cap I_{p_{r}}^{m_{r}}$ is an ideal defining r fat points in \mathbb{P}^{n} and $d>0$ is an integer such that $H_{I}(d)>0$ then

$$
\sqrt{n} \cdot d \geq m_{1}+m_{2}+\cdots+m_{r} .
$$

References

[1] Fröberg, An inequality for Hilbert series of graded algebras. Math. Scand. 56 (1985), no. 2, 117-144.
[2] J. Harris, Curves in projective space, Montreal: Les Presses de l'Université de Montreal, 1982.
[3] F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc., 26 (1927), 531-555.
[4] R. Maggioni, A. Ragusa, The Hilbert function of generic plane sections of curves of \mathbb{P}^{3}. Invent. Math. 91 (1988), no. 2, 253-258.
[5] M. Nagata, On the 14-th problem of Hilbert, Am. J. Math., 81 (1959), 766-772.
[6] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83.
[7] R. P. Stanley, On the Hilbert function of a graded Cohen-Macaulay domain. J. Pure Appl. Algebra 73 (1991), no. 3, 307-314.

Exercises on Hilbert functions

(1) (a) Prove that for $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the Hilbert function is $H_{R}(i)=\binom{n+i-1}{i}$ using a combinatorial argument.
(b) Prove that for $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the Hilbert function is $H_{R}(i)=\binom{n+i-1}{i}$ and the Hilbert series is $H S_{R}(t)=\frac{1}{(1-t)^{n}}$ by induction on n.
(2) Prove that if $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $f_{1}, \ldots, f_{d} \in R_{+}$are such that for $1 \leq i \leq d, f_{i}$ is a non zero-divisor on $R /\left(f_{1}, \ldots, f_{i-1}\right)$, then

$$
H S_{R / I}(t)=\frac{\prod_{i=1}^{s}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}
$$

(3) Prove that for $R=\mathbb{F}[x, y, z]$ and $I=(F, G)$ such that $\operatorname{deg}(F)=2, \operatorname{deg}(G)=3$ and $\operatorname{gcd}(F, G)=1$ the h-vector of R / I is $1,2,2,1$.
(4) (a) Prove that a set of six points in \mathbb{P}^{2} that lie on two lines does not satisfy the Uniform Position Property.
(b) Prove that a set of six points in \mathbb{P}^{2} that lie on an irreducible conic satisfies the Uniform Position Property.
(5) Does there exist a set of points in \mathbb{P}^{3} having the Uniform Position Property and h-vector $1,3,6,5,6$?
(6) Prove that the h-vector of a Cohen-Macaulay graded domain of dimension greater or equal to two is also the h-vector of a graded domain of dimension two using Bertini's Theorem.
(7) Let I be a homogeneous ideal of $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $m=\left(x_{1}, \ldots, x_{n}\right)$. The fiber ring of I is $\mathcal{F}(I)=\bigoplus_{i \geq 0} I^{i} / m I^{i}$. Show that $\mathcal{F}(I)$ is an \mathbb{F}-algebra and find what the Hilbert function of $\mathcal{F}(I)$ counts.
(8) A graded finite dimensional \mathbb{F}-algebra A is called Gorenstein provided that

- $A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{s}$ with $A_{s} \cong \mathbb{F}$ and
- for any $0 \leq i \leq s$ and $a \in A_{i}$ there is $a^{\prime} \in A_{s-i}$ such that $a a^{\prime} \neq 0$.

Prove that h-vectors of Gorenstein algebras are symmetric ($h_{i}=h_{s-i}$) using the following outline:

Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right], A=R / I$ and $J=0:_{A} I$.
(a) show that $J_{s-i}=\operatorname{ker}\left(A_{s-i} \rightarrow \operatorname{Hom}\left(I_{i}, A_{s}\right)\right)$;
(b) show that there is an injective map $J_{s-i} \rightarrow \operatorname{Hom}\left(A / I_{i}, A_{s}\right)$;
(c) deduce that $H_{A}(s-i) \leq H_{I}(i)+H_{J}(s-i) \leq H_{A}(i)$ for all $0 \leq i \leq s$;
(d) conclude that $H_{A}(s-i)=H_{A}(i)$ for all $0 \leq i \leq s$.

[^0]: ${ }^{1}$ a technical condition which insures that if $\operatorname{dim}(R / P)=d$ then there is a sequence $f_{1}, \ldots, f_{d} \in R_{+}$such that for $1 \leq i \leq d, f_{i}$ is a non zero-divisor on $R / P+\left(f_{1}, \ldots, f_{i-1}\right)$.

